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The Influence of Plastic-Strain-Induced Anisotropy 
Modeled as Combined Isotropic-Kinematic Hardening 

in the Tension-Torsion Straining Problem (]I) 
- - N u m e r i c a l  V e r i f i c a t i o n s  w i t h  E x p e r i m e n t a l  M e a s u r e m e n t s - -  
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In order to examine the influence of plastic-strain induced anisotropy(modeled as combined 

isotropic-kinematic hardening) on the stress response from the non-proportional  straining in 

the tension torsion tests, a strain-controlled calculation was performed and compared with 

experimental measurements. The back stress was visualized in the deviatoric stress space to 

determine the importance of the role of the kinematic component for the accurate prediction. 

The result revealed that a combination of isotropic and kinematic hardening, including the 

influence of the spin on the evolution of the back stress, leads to good qualitative agreement with 

experimental results. It was also shown that the kinematic component of the proposed hardening 

model plays significant role to predict the stress responses from the cornered strain path 

accurately. 
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1. Introduction 

Most of the literature which attempts to formu- 

late a constitutive relation for plastic strain-in- 

duced anisotropy involving kinematic hardening 

at finite strain illustrate their numerical or analyt- 

ical results by a simple shear problern. For the 

simple shear deformation which has long been 

used as a benchmark test for the constitutive 

modeling of the strain-induced anisotropy, tor- 

sion of thin walled tubes was adequalely used 

(see, for example, Paulun and Pecherski, 1987 ; 

Zbib and Aifantis, 1988). Torsion of a bar with 

solid circular cross-section was also used to avoid 

buckling in the case of large deformations (Van 

Der Giessen et al., 1992). A tension-torsion test 

provides easily interpretable information for for- 
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mulating constitutive relations in complicated 

situations. 

In order to investigate the influence of plastic- 

strain induced anisotropy, a two-dimensional 

numerical analysis of a tension-torsion test of a 

thin walled tube has been carried out and 

compared with experimental data obtained from 

Cbeng and Krempl (1989). Cornbined non- 

proportional tension torsion straining involves a 

general interaction between the plastic strain rate 

tensor and the back stress even at small strains. 

This therefore constitutes a convenient experimen- 

tal procedure for investigating the structure of the 

plastic theory involved, in contrast to simple 

shear which involves general interactions only at 

finite strains, which restricts the generality of the 

test. The tension-torsion test shown in Fig. 1 

offers an effective means to observe the evolution 

of stress response, and provides alternative rela- 

tions for strain-induced anisotropy for a general 

range of variation of back stress and plastic strain 
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Fig. l Tension torsion test of a thin-walled tube. 

rate. The out-o~phase tension torsion test as 

conducted by Lamba and Sidebottom (1978) can 

generate rotating bi-axial stress tensors which 

will be accompanied by only small material rota- 

tion, but are capable of producing large inclina- 

tions between back stress and plastic strain rate 

tensors at small strain. Using the structure of 

evolution of the back stress presented in part l, a 

numerical simulation of tension torsion of a thin 

walled cylinder was carried out. The results were 

compared with experimental data obtained from 

Cheng and Krempl (1991). Before this, the influ- 

ence of plastic strain-induced anisotropy on the 

axial stress development in fixed-end torsional 

straining, which was reported, for example, by 

Montheillet et al. (1984) and White (1988), and 

on the stress response from the straining along the 

path with a corner are presented. 

2. E l a s t i c - P l a s t i c  C o n s t i t u t i v e  

E q u a t i o n s  at  F i n i t e  S t r a i n  

2.1 Basic constitutive equations 
When the elastic strains are on the order of 10 3 

(yield stress divided by elastic modulus magni- 

tudes) so that plastic strains will generally domi- 

nate elastic strains, the Jaumann derivative of 

Kirchhoff stress, 8, can be expressed as 

~ = L e  : ( D - - D  p) (I)  

with L e as the elastic moduli which are obtained 

from the derivatives of the small deformation 

strain energy function. D is the rate of deforma- 

tion and the superscript "p" denotes plastic. For 

combined isotropic kinematic hardening model, 

the von-Mises yield condition takes the form 

2 2 (cy'-- o~) : ( a ' - -  a) = T 6  (2) 

where o' is the deviator of the stress, o, ~Y the 

scalar representing the isotropic component of the 

current tensile yield stress. By assuming equiva- 

lence of the yield condition and the plastic poten- 

tial, D p can be written as 

D, / 3  _-p = ~ / 2  c n (3) 

where gP is the rate of effective plastic strain (gP 

(] Dp D p : ), and n the unit normal to the 

yield surface expressed in Eq. (2) : 

n = (4) 
O" 

Here the function h(a,  D p) in Eq. (2) of part I 

can be expressed in terms of the stress component 

o" a using Eq. (4) as 

3 
~ - h  (0z, a ' - - e )  (5) h (if, D p) = ~  

As described by Agah Tehrani et al. (1987), the 

development of the consistency condition requires 

input concerning the updated yield condition 

which can be obtained by differentiating Eq, (2). 

With Eq. (5), the consistency equation takes the 

form 

3 ~-Ph 
~' (a" a ) - T ~  (a, a ' - a )  : 

2 H -'p ( a ' - a ) = T v  ' e  (6) 

where 

H,(~p) - d ~  (7) 
d gP 

is the isotropic hardening coefficient. It is conve- 

nient to express the consistency condition in the 

form 

g p  ( a ' - - a )  : ~ '  (8) 
H a  

where H is the combined isotropic-kinematic 

hardening coefficient : 

3 ( a ' - a )  : h(a ,  a '  a) 
H =  H'4 2 62 (9) 
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Utilization of (6), (7) of part I, Eqs. (3) and (4), 

together with the consistency condition (8) and 

(9), leads to the lot[owing expression for D p : 

D " =  (n - 8 ) n  (10) 
H 

with 

H = 2 H ' + c +  r 

I 
[n : f~ -7~ -  ( a 2 n + n f - 2 a n a ) ]  (1 1) 

where H' and c are the isotropic and kinematic 

hardening modulus, respectively, and r is a non- 

dimensional material dependent parameter which 

controls the contribution of the spin due to in- 

duced anisotropy. Note in Eq. (11) that lhe in- 

duced anisotropy terms come into play in the 

effective hardening modulus H. 

Substitution of Eq. (10) into Eq. (1) and 

inversion of the resulting equation leads to the 

final structure of the rate type constitutive rela- 

tion 

8 = L  : D (12) 

where 

Onunkl 1 -- _H_+ (13) 
2tz I 

where O = 1  if d--dm~• and c7>0, and O = 0  if 
< g~.~ or ~ < 0. ~ and ~, are the shear modulus 

and Poisson's ratio of the material, respectively. 

In the computation, the parameter  fl expresses 

the proportion of the isotropic to kinematic har- 

dening. This parameter is considered to be such 

that 

H'- - /3H (14) 

c=2( i -~ )H (15) 

where H' and c are computed from the slopes of 

the isotropic and kinematic hardening curves, 

respectively, and H from the uniaxial stress-strain 

curve, fl is a m a t e r i a l - d e p e n d e n t  h a r d e n i n g  

parameter such that isotropic hardening corre- 

sponds to /3'--I, kinematic hardening to /3=0. 

2.2 Constitutive equations of tension-tor-  
sion of thin-walled tube 

The combined isotropic-kinematic hardening 

theory was applied to the analysis of lhe stresses 

generated by deformation of a thin tube following 

a prescribed path in strain space. Assume that the 

tube wall is sufficiently thin so that the stress state 

is homogeneous, in which case the non-zero true 

stress components are 

o'zz--o" and d z ~ - - d ~ = r  (16) 

where z, r and r indicate the axial, circumferen- 

tial, and radial directions, respectively. At finite 

strain, McMeeking (1982) has obtained the non- 

zero components of 8, the Jaumann derivative of 

true stress : 

~ z = - 8 - ~ r ~ ' ,  8r r;?, 8 z r  (17) 

The elastic-plastic stress-strain relations are 

D _  d ' i j _  1 ~ 1 
i i--  21~-~- 9x oi,i gkk~--nkl (]ktni~ (18) 

where D is the rate of  de format ion ,  /~ is the 

shear modulus,  x the bulk modulus,  H is the 

effective hardening modulus expressed in Eq. 

(10), and n the unit normal to the yMd surface. 

A superscipt prime indicates the deviator. Substi- 

tution of (17) into (18) yields : 

• ; fz-_ 1 r . 
D = - - (  31/~+ 91x ) ~ . ~ / ,  • a --nz~ )>a 

-~- (nz~-- nr ~r  +2nzr z: I nzz (19.a) 

~ +Tj, ,  Eo=  
n~+?d+ (n,~ nr ? r + 2 n ~ # z : l n ~  (19.b) 

D~r 6/s 9x 8 -  2Zt ~ - H  -Ln~zo 

- -n~r  (n=-n r162  j . r  +2n~r z~ ]nee (19.c) 

_ ( _ )  . . . . .  L )  + 1 [n~a Drr= 6/1 9," 8 -- nz~,)d 

+ (nz~--nr162162 ] n~,. (19.d) 

3. Numerical Implementation 

Finding analytical solutions to the nonlinear 

ordinary differential equations derived in the 

former section is extremely complicated, and thus 

a explicit numerical method with very small in- 

cremental steps was carried out. For  polygonal 
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paths, the size of the incremental step was 9.754 • 

10 -6, which is smaller than the off-set strain, I • 

10 4. At the onset of each increment, the pre- 

scribed strain rates in the radial and circumferen- 

tial directions are computed with enough itera- 

tions to ensure convergence. The integration al- 

gorithm used for this computation was given in 

Sub et al. (1991). 

The material data used in the computation is 

based on experiments carried out by Cheng and 

Krempl (1991) in which a thin walled tubular 

specimen was made of an AI/Mg aluminium 

alloy with initial yield stress of 52.5 MPa, Young' 

s modulus E=68,653 MPa, and Poisson's ratio 

0.33. The uniaxial hardening curve used in the 

computation was obtained fiom Cheng and 

Krempl (199 I) where a complete set of the stress 

response data for the whole strain path was only 

available with the ALG4 specimen in which 

uniaxial stress-strain data were measured only up 

to 1% of strain. Thus, extrapolation was carried 

out from other specimens, ALC41 and ALG2, for 

which the data were measured up to 6% and 15% 

strain, respectively. Based on this, stress responses 

from various strain paths were computed by 

changing the parameters such as /f and & Since 

the uniaxial stress-strain data are not so consis- 

tent for all the available specimens, the stress 

prediction should be analyzed in a qualitative 

sense. 

4. Results  and Discuss ion 

4.1 Axial  stress  development in fixed-end 
torsional straining 

Montheillet et al. (1984) have reported the 

axial stresses induced during the torsion testing of 

aluminium, copper and u-iron at temperatures 

between 20~ and the hot working range. They 

measured induced, compressive axial force at low 

temperatures and small strains for all three 

metals. At high temperature and increased strain, 

the sign of the axial force was different for the 

single phase and two phase alloys. White (1988) 

also observed the same effect with 1100-O alu- 

minium and 316 stainless steel specimens, Fig. 2. 

The magnitude of induced axial stress differs for 

Fig. 2 Experimental results of the shear and axial 
stresses measured from a torsion test of type 
316 stainless steel (above) and 1100 O alu- 
minum (below) (White, 1988). 

different materials. It seems that the material 

which has greater yield stress generates a larger 

magnitude of axial stress. Similar responses have 

also been predicted by the present numerical 

experiment by prescribing simple shear up to 6% 

of generalized shear strain with isotropic and 

kinematic hardening, Fig. 3. The magnitude of 

the yield stress of material used in the computa- 

tion was between that of the two materials in Fig. 

2. Figures 4 and 5 represent the generalized shear 

stress and the induced axial stress against shear 

strain, respectively. The former does not show any 

distinguishable variation under different /~ and 

9, while the latter shows some variation. This is 

partly due to the incorporation of the Jaumann 

stress rate in the constitutive relation. When the 

magnitude of axial stress rate is zero, the axial 

Jaumann stress rate is reduced to rf ' ,  which is 

responsible for the predicted induced axial stress 

at finite strain. For a small strain formulation, 

this term does not appear. Since the order of d;e 
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Fig. 3 Prescribed, generalized shear strain path up 
to 6%. 

Fig. 5 Modification of Fig. 4 for the: induced axial 
stress response. 

Fig. 4 Generalized shear stress response fiom the 
path prescribed in Fig. 3 under isotropic and 
kinematic hardening with various values of 
9. 

in the shear Jaumann stress rate is very small, this 

term hardly affects shear stress. This indicates 

why there are no discernable variations in Fig. 4. 

Terms such as r;~ and o'~" do not appear in the 

small strain formulation. Numerical computa- 

tions without the Jaumann stress rate generated 

no induced axial strain for both isotropic and 

kinematic hardening. The axially induced stress is 

more evident with kinematic hardening which 

includes the spin terms associated with induced 

anisotropy. This plays an important role when ce 

and D p develop non-coaxially. Figure 5, how- 

Fig. 6 Modification of Fig. 4 for the stress response 
in the axial stress-generalized shear stress 
space, 

ever, shows that kinematic hardening with no or 

little contribution of the spin associated with 

induced anisotropy leads to excessive induced 

axial stress in this range of deformation. Increas- 

ing the magnitude of ~b to 100 lecl to a reason- 

able amount of axial stress. As also indicated by 

Neale and Shrivastava (1985), isotropic harden- 

ing predicts small axial efl'ects. Figure 6 shows the 

stress response in stress space. Note that the 

direction of the stress rate vector tends to recover 

that of the prescribed strain rate vector only with 

isotropic and kinematic hardening with ~b= 

--100. It is noted that the axially induced stress 
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can therefore be well predicted by controlling /9 

and ~. 

4.2 Straining along a path with a corner 

The influence of p l a s t i c - s t r a in - induced  

anisotropy in stress response to linear paths in 

strain space which intersects at a corner was 

examined. The direction of the stress vector is not 

tangential to the strain path immediately after the 

corner, but it becomes tangential to the strain 

path gradually as the strain point progresses 

along the prescribed linear path. To explain this, 

llyushin (1954) defined the "trace of delay" as 

the length of the strain path, after a change in 

strain path, required for the stress vector to once 

again become tangential to the strain trajectory. 

Before the investigation of the corner effects for 

hardening material, computations with simpler 

assumptions were carried out to better understand 

stress behavior. Three cases with Young's moduli 

(E) equal to 68,653 MPa, 200,000 Mpa and 3,000, 

000 MPa for the elastic perfectly plastic (non 

strain hardening) materials illustrated in Fig. 7 

were analyzed. The prescribed strain history 

involved 1% axial prestrain, followed by a 90 ~ 

corner in the axial-generalized shear stress space. 

The initial yield stress Y~=52.5 MPa and Young's 

modulus E=68,653 MPa are typical values of Al /  

Mg aluminium alloy. By increasing Young's 

modulus to 3,000,000 MPa, nearly perfectly-plas- 

tic material can be modeled for which D approxi- 

mately equals to D p. Since the axial strain is held 

constant immediately after the corner, Dzz=0. 

2 
From the flow rule this leads to o'='= 3-O'zz 0, 

and hence # = = 0  as all the other normal stress 

components are. Therefore the axial stress will 

converge to zero unless the rotation effect due to 

shear strain is taken into account. Since there 

exists induced axial stress after the corner as 

explained in the previous section, the limiting 

stress will be slightly compressive. Figure 8 plots 

predicted axial and generalized shear stresses 

against the total length of the strain path. After 

the corner, the axial stress for the near-rigid case 

(E--3,000,000 MPa) drops very rapidly to zero 

while the elastic-plastic case shows a decreasing 

transition region due to elasticity. The shear stress 

shows the same pattern. This can be observed 

more clearly from Fig. 9, where stress responses 

for all three cases are plotted in stress space. Here, 

the von Mises yield surface can be represented by 

a quarter circle in axial stress generalized shear 

stress space. The distance between adjacent sym- 

bols represents the increment of predicted stress 

for a fixed, prescribed strain increment. As the 

direction of plastic flow changes at the corner, the 

stress zips along tile yield surface from the axial to 

shear direction due to the normality condition. In 

Fig. 7 Elastic perfectly plastic, uniaxial stress 
-strain curve with different Young's moduli. 

Fig. 8 Predicted axial and generalized shear stresses 
against the total length of the strain path for 
the elastic-plastic material (E--68,653 MPa) 
and the nearly-perfectly plastic material case 
(E-- 3,000,000 MPa). 
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Fig. 9 Stress response in the axial stress generalized 
shear stress space for various magnitudes of 
the Young's moduli. 

Fig. 10 Strain path with 1% and 4% axial prestrains 
respectively followed by 90 ~ corners. 
Generalized shear strains are prescribed up 
to 8%. 

the case of perfectly plastic material, the stress 

will jump traveling along the yield surface. This is 

well illustrated with higher Young's moduli such 

that the adjacent symbols are apart further in 

between the axes of the axial and the generalized 

shear stresses. Thus it can be deduced that the 

circular trajectory in stress space for elastic-plas- 

tic material is associated with the elasticity. 

I"o examine corner effects with hardening, 

stress responses were computed for a strain path 

with I% and 4% axial prestrains, respectively, 

followed by 90 ~ corners as shown in Fig. 10. 

Before moving on to the results, the stress behav- 

ior around a corner under rigid-plastic assump- 

tion will be briefly analyzed. In Fig. I 1, the two 

schematics indicate the change of direction of the 

stress rate before and immediately after the corner 

with isotropic and kinematic hardening, respec- 

tively, for rigid plastic theory. With isotropic 

hardening, the stress rate immediately after the 

corner zips around the yield surface from the 

yield stress in tension. This is determined by the 

plastic flow law. When kinematic hardening is 

involved, since the flow rule contain.,; back stress 

such that DP=~(o" -c~) ,  the saturation of the 

stress rate after the corner will be slower than that 

with isotropic hardening, and kinematic harden- 

ing will show some axial stress due to the pres- 

train. 

Figure 12 shows variations of the axial (o') and 

the generalized shear stresses (,/-3-r) against the 

length of the strain path with isotropic, combined 

(~--0.5, ~b -100.0,  -4 .0 ,  0.0), and kinematic 

hardening(2=0.0 ,  ~b= 100.0) for elastic-plastic 

assumption. Before the corner, all the axial stress 

responses are coincident since only simple tension 

occurs, and thus symbols designating them are 

not to be confused with those of generalized shear 

stresses. Immediately after the corner, the axial 

stress decreases while the shear stress increases, 

both rapidly, and saturates eventually. The mag- 

nitude of axial stress is also decreased as that of/5' 

is increased. By increasing the magnitude of {b, the 

saturated axial stresses become smaller since the 

spin associated with induced anisotropy is embed- 

ded in the effective hardening modulus as shown 

in Eq. (1 I). The same results are shown in stress 

space in Fig. 13. Since the length between sym- 

bols in the strain space is fixed, the size of incre- 

ment in stress space indicates the rate of stress. 

Dense symbols in the later stage indicates that the 

d r  - 0  stress is saturating. Since d y -  when Y becomes 
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(a) Isotropic hardening 

Fig. 11 

(b) Kinematic hardening 

Schematics indicating the change of direction of the stress rate before and immediately after the 
corner with isotropic and kinematic hardening assuming rigid plastic theory. 

large, shear stress will eventually saturate. In Fig. 

13, only a larger magni tude  of ~b led to the 

direction of the stress rate vector being tangential 

to that of the strain rate vector at later stages. 

Pure kinematic hardening (/~=0.0) requires a 

longer strain path to recover the direction of 

prescribed strain. The stress responses with larger 

prestrain (4%) are plotted in Figs. 14 and 15. 

Similar to the previous case, isotropic hardening 

shows slightly compressive stress even with larger 

prestrain, which is not reasonable. By incorporat- 

ing kinematic components, the effect of axial 

prestrain is well represented. According to Fig. 

15, among combined isotropic kinematic harden- 

ing, only the ~b-- -- 100.0 case shows the direction 

of stress rate parallel to the prescribed shear strain 

rate vector. This indicates that, with appropriate 

values of fl and ~b, experimental behavior can 

be correctly predicted. 
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Fig. 12 Predicted axial and generalized shear stres- 
ses against the total length of the strain 
path for 1% axial prestrain followed by a 90 
~ corner (Fig. 10) with isotropic, combined 
isotropic-kinematic (fl-0.5, (,-- I00.0, 
--4.0 and 0.0) and kinematic hardening ((~ 
=- -- 100.0). 

Fig. 14 Modification of Fig. 12 for 4% axial pres- 
train. 

Fig. 13 Modification of Fig. 12 for stress response 
in the axial-generalized shear stress space. 

4.3 Straining along the polygonal path 

4.3.1. Evolution of the loading stress  
The loading stress in this analysis is defined by 

the stress recorded in the stress space when the 

controlled strain reaches the corresponding yield 

surface probing station in the polygonally pre- 

scribed strain path, shown in Fig. 2 of part I .  

Following the polygonal strain path, loading 

stress response has been computed and monitored 

at each yield surface probing station. Figure 16 

Fig. 15 Modification of Fig. 14 for stress response 
in the axial-generalized shear stress space. 

shows predicted stresses under isotropic harden- 

ing (~:=1.0) and kinematic hardening (~=0.0)  

with various values of ~b in comparison with 

experimental stress responses in o--~/3r space. As 

previously mentioned, this comparison should be 

made in a qualitative sense due to mwLerial incon- 

sistency. Experimental results were obtained from 

the ALE7 specimen, which has not gone through 

yield surface probing until station 14. For 

kinematic hardening, even with large magnitude 

(~, stress responses are very much underpredicted 

except at earlier stages. The isotropic hardening 

case, on the contrary, overpredicts especially at 

later stages. This can partly be explained by the 
facts mentioned in two previous sections. In the 
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Fig. 16 Predicted stresses under isotropic harden- 
ing (2=1.0), kinematic hardening (2 0. 
0) with various values of ~b in compari- 
son with experimental stress responses in 
the axial generalized shear stress space. 

present path, torsionally induced axial stress and 

change of stress due to corners interact simultane- 

ously, making the analysis complicated. It seems 

that predicted stresses with isotropic hardening 

show relatively good agreement with experiments. 

This may lead to an incorrect conclusion if the 

inconsistency of mechanical properties among 

different test specimens is not considered. 

Although obtained from the same material, 

almost all the specimens exhibit different stress 

strain curves possibly due to initial anisotropy 

or inhomogeneity of the material. As previously 

mentioned, the stress strain curve used in the 

computation was obtained from the specimen 

which was not the same as that used in the 

experiments. It is important, therefore, that the 

comparison should be made in a qualitative sense. 

By increasing the magnitude of 9, the pattern of 

predicted stresses becomes closer to that of experi- 

mental stress responses at later stages. Figure 17 

contains the results under hardening for various 

values of ~' with ~b= 100.0, and isotropic har- 

dening. /5'=0.65, 0,70, 0.65 with 9- - - -100 .0  

shows quite similar behavior and qualitatively 

matches the experimental stress pattern. Figure 18 

contains the predicted stresses at a fixed value of 

with different magnitudes of ~b, ~b larger than 

100 shows good agreement, while no spin as- 

Fig. 17 Modification of Fig. 16 for 2--0.75, 0.70 
and 065 with $ --100.0. 

Fig. 18 Modification of Fig. 16 for 2 0.65 with 
=--200.0 and 100.0 and 0.0. 

sociated with induced anisotropy (~b=O) was less 

successful. For all the cases, the largest disagree- 

ment with experimental data was observed imme- 

diately after the shear strain changed its direction. 

As yet the reason for this is not clear, it could 

perhaps be attributed to either the constitutive 

relation, which may not be able to cope with an 

abrupt change of the direction of shear strain, or 

an accumulation of plastic deformation due to 

experimental errors in probing for yield surfaces. 

4.3.2. Evolution of  the back stress 

In the previous section, only the loading stress 

evolution was considered, With kinematic har- 

dening, however, the evolution of back stress is 
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also important.  Defining the back stress in stress 

space can differ according to the measure adopt- 

ed. In this study the center of the yield locus in 

terms of the back stress was computed and 

compared with the centers of the yield loci 

obtained from the fitted circle by the procedure 

described in part I. It is important  to recognize 

that the center of yield locus in the axial stress 

generalized shear stress space cannot  be identified 

directly as the components  of the back stress as it 

is deviatoric. The correlation formulae expressing 

von Mises yield circle in the axial stress - general- 

ized shear space have been derived in terms of the 

stress and the back stress in part I .  Figure 19 

shows the evolut ion of the centers of experimental 

yield loci from the polygonal strain path depicted 

in Fig. 2 of part I , obtained by a least squares fit 

procedure. Since the ALF7 specimen has not 

gone through yield surface probing until station 

14, data from the A L G 4  specimen, which generat- 

ed a similar loading stress pattern as that of  the 

ALF7,  was selected, Three different cases are 

obtained from fittings based on 6, 10 and 12 

component  data sets over the nose geometry of the 

yield locus involving 3, 5, and 6 data sets, respec- 

tively, on each side of the axis of the prestraining 

direction. The evolut ion of the centers varies. 

However, note that the smaller data sets predict a 

larger kinematic component .  It is clear that the 

smaller the number  of data over the nose geome- 

try, the smaller will be the curvature of the yield 

circle. Relatively reliable trajectories of the cen- 

ters have been obtained by choosing the I2 data 

points. Based on this, the evolut ion of the centers 

computed from the numerical  results was compar-  

ed. The center of the computed yield locus is (1. 

5c~z~, ]3~z~), according to part I .  Figure 20 

shows the evolut ion of centers of the yield loci 

with kinematic hardening for ~b . . . .  200.0, 100. 

0, -4.0, and 0.0 in comparison with centers of the 

experimental yield loci computed by least squares 

fit. All numerical  results differ significantly from 

the experimental data. This plot also suggesls that 

the magnitude of the back stress is increased when 

that of ~b increases. By increasing the isotropic 

component ,  i. e., reducing the kinematic compo- 

nent, back stress magnitudes became closer to that 

of  the ones from least squares fit, see Fig. 21. 

Figure 21 contains  the results under various /5' 

with a fixed value of ~b. A larger port ion of the 

isotropic component  led to smaller magnitudes of 

the back stress. Selecting /9=0.65 as one of the 

better parameter sets to fit the experimental stress 

Fig, 19 Evolution of the centers of experimental 
yield loci for 1he polygonal strain path 
depicted in Fig. 2 of part [ , obtained by 
the least squares fit procedure. 6, 10 and 12 
component data sets over the nose geometry 
of the yield locus, involving 3, 5, 6 data sets 
respectively on each side of the axis of the 
prestraining direction, have been selected. 

Fig. 20 Evolution of centers of the yield loci with 
kinematic hardening for ~b= 200.0, 
--100.0, 4.0, and 0.0 in comparison with 

centers of experimental yield loci computed 
by the least squares fit. 
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Fig. 21 Modification of Fig. 20 for /~--0.75, 0.70, 
and 0.65 with ~b-- 100.0. 

Fig. 23 Extended strain path at station 3 of the 
polygonal path in Fig. 2 in part I .  

Fig. 22 Modification of Fig. 20 for r with ~b 
----200.0, --100.0 and 0.0. 

pattern, from Figs. 18 and 21, the influence of ~b 

was examined in Fig. 22. No contribution of spin 

associated with induced anisotropy led to the 

evolution of the center far from that of the experi- 

ments. Although some sections differed from the 

experimental results, the magnitudes of ~b 

greater than or equal to 100 show relatively good 

agreement. 

Comparing with experimental stress patterns, 

numerical prediction of both the loading stress 

and the center of the yield locus, expressed in 

terms of the back stress, indicates that inclusion of 

the plastic strain-induced anisotropy into the 

constitutive modeling improves stress prediction 

of the tension torsion test of a thin walled tube. 

Fig. 24 Predicted axial and generalized shear stres- 
ses against the total length of the strain 
path for the extended path in Fig. 23. 

4.3.3. Corner  e f fec t  
To examine the corner effect which exists in the 

polygonal path, the extended straight paths at 

stations 3 and 7 of Fig. 2 in part I were pre- 

scribed respectively. Figure 23 shows the extended 

path emanating from station 3. The stress 

responses from this path are plotted in Figs. 24 

and 25. Figure 24 indicates that the variation of 

generalized shear stress is more evident than that 

of axial stress. Figure 25 shows that, because of 

this shear stress variation, stress trajectories vary 

in the axial stress-generalized shear stress space 

under various values of ~ and ~b. lsotropic har- 

dening and combined isotropic hardening of the 
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Fig. 25 Modif*eation of Fig. 24 for stress response 
in the axial-generalized shear stress space. 
Bigger symbol denotes the data at the prob- 
ing station. 

Fig. 27 Predicted axial and generalized shear stres- 
ses against the total length of the strain 
path for the extended path in Fig. 26. 

Fig. 26 Extended strain path at station 7 of the 
polygonal palh in Fig. 2 in part 1 

~--0.65, ~b= -- I00 case, which recovers the direc- 

tion of the strain rate fast, is close to experimental 

results. Pure kinematic hardening with ~b=---100 

and combined hardening /~:0.65 with ~b:=--4.0 

and 0.0 show less agreement at station 3. Similar 

patterns for the extended path emana'~ing from 

station 7, Fig. 26, are shown in Figs. 27 and 28. 

Again, the /~=0.65, ~b=-100  case shows good 

agreement with experimental results. Figure 28 

indicates lhat the longer the strain path is traver- 

sed, the more drastic is the variation among the 

different parameter sets. Note that the direction of 

the stress rate vector with the polygonal path 

Fig. 28 Modification of Fig. 27 for stress response 
in the axial-generalized shear ,;tress space. 
Bigger symbol denotes the data at the prob- 
ing station. 

always lags behind that of the strain vector. 

5. Conclusion 

The plastic-strain-induced anisotropy modeled 

as combined isotropic-kinematic hardening was 

effectively verified by the simulation of tension 

torsion straining and its comparison with the 

corresponding experimental measurements, In 

contrast to the work done by Dafalias (1985) and 

Zbib and Aifantis (1988), who introduced plastic 

spin as a relative spin, and by Ning and Aft:antis 
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(1997), who observed induced anisotropy in a 

level of grain and aggregate of polycrystalline, 

this work is significant in that the induced 

anisotropy derived from the isotropic tensor, 

which is a function of the back stress and the rate 

of plastic deformation (proposed by Agah Te- 

hrani et al., 1987), was visualized numerically 

and verified with available experimental measure- 

ments. The major results obtained from this work 

are as follows : 

(1) A program which computes the stress 

response from controlled finite strain path in the 

tension torsion straining was successfully devel- 

oped. 

(2) Using the developed program, axially in- 

duced stress from the fixed-end torsion test was 

simulated in order to examine the role of plastic 

strain induced anisotropy associated with 

kinematic hardening. Numerical findings indicat- 

ed that only the finite deformation formulation of 

the constitutive equation and appropriate magni- 

tude of plastic-strain-induced anisotropy can 

lead to the correct prediction of induced axial 

stress. 

(3) Straining along a path with a corner has 

been analyzed in detail. It was shown that only 

the kinematic component with appropriate magni- 

tude of plastic-strain-induced anisotropy can 

show traces of delay, which is an experimentally 

observed effect from the path with corner. 

lsotropic hardening showed trace of delay, 

although it is not so evident. However, it was 

shown that this is a result of the elasticity of the 

material, while with the kinematic hardening the 

back stress plays a major role in describing such 

a phenomenon. 

(4) The center of the yield locus in terms of the 

back stress was computed and compared with the 

centers of the yield loci obtained from the fitted 

circle. Relatively reliable trajectories of the cen- 

ters have been obtained by choosing the twelve 

data points. Based on this, the evolution of the 

centers computed from numerical results was 

compared. For the AI/Mg alloy tested, selecting 

8 - -  0.65 with the magnitudes of ~b greater than 

or equal to 100 show relatively good agreement. 

Compared to experimental stress patterns, numer- 

ical prediction of both the loading stress and the 

center of the yield locus, expressed in terms of the 

back stress, indicates that inclusion of the plastic 

-strain-induced anisotropy into the constitutive 

modeling improves stress prediction of the tension 

torsion test of a thin walled tube. 

In this work, only the fl and ~b, which are 

directly related with the first and the rotational 

terms in the full invariant form of the back stress 

evolution equation, were determined by par- 

ametric study and comparison with measure- 

ments. The structure of the spin associated with 

induced anisotropy in stress space still remains to 

be identified. By taking account of more terms in 

the full form of the invariant evolution equation, 

more accurate evaluation of the anisotropic har- 

dening model could be achieved. To do so, more 

extensive and elaborate design of the test, and 

careful experiments to obtain consistent evolution 

of subsequent yield loci, are needed. This will be 

left as future work. 

Acknowledgements 

The author would like to thank Prof. E. 

Krempl of Rensselaer Polytechnic Institute and 

Dr. S. Cheng of Concurrent Technologies Corpo- 

ration for providing valuable experimental data. 

The generous advice on this work by Dr. E. H. 

Lee, Emeritus Professor at both Rensselaer Poly- 

technic Institute and Stanford University, is grate- 

fully acknowledged. 

References 

Agah-Tehrani,  A., Lee, E. H., Mallett, R. L. 

and Onat, E. T., 1987, "The Theory of Elastic- 

Plastic Deformation at Finite Strain with Induced 

Anisotropy Modeled as Combined lsotropic- 

Kinematic Hardening," J. Mech. Phys. Solids, 
Vol. 35, pp. 519-539.  

Cheng, S. and Krempl, E., 1991, "Experimental 

Determination of Strain-lnduced Anisotropy 

During Nonproportional Straining of an A1/Mg 

Alloy at Room Temperature," Int. J. Plasticity, 
Vol. 7, pp. 827--846. 

Dafalias, Y. F., 1985, "The Plastic Spin," J. 



The Influence o f  Plastic Strain-lnduced Anisotrop) .... ( H ) 597 

Appl. Mech., Vol. 52, pp. 865--871. 

llyushin, A. A., 1954, "On the Relations 

between Stresses and Small Deformations in the 

Mechanics of Continuous Media," Prikl. Mat. 

Mekh., Vol. 18, pp. 641--666. 

Lamba, H. S. and Sidebottom, O. M., 1978, 

"Cyclic Plasticity for Nonproport ional  Paths : 

Part I-Cyclic  Hardening, Erasure of  Memory, 

and Subsequent Strain Hardening Experiments," 

J. Engng. Mat. Tech., Vol. 100, pp. 96 -103 .  

McMeeking, R. M., 1982, "The Finite Strain 

Tension Torsion Test of a Thin-Wal led  Tube of 

Elastic-Plastic Material," Int. J. Solids Struc- 

tures, Vol. 18, pp. 199--204. 

Montheillet, F., Cohen, M. and Jonas, J. J., 

1984, "Axial Stresses and Texture Development 

during the Torsion Testing of AI, Cu, and a-Fe ,"  

Acta Metall., Vol. 22, pp. 2077--2089. 

Neale, K. W. and Shrivastava, S. C., 1985, 

"Finite  Elastic-Plastic Torsion of  a Circular 

Bar," Eng. Fract. Mech.. ,  Vol. 21, pp. 747--754. 

Ning, J. and Aifantis, E. C., 1997, "Anisotropic 

Yield and Plastic Flow of Polycrystalline Solids," 

Int. J. Plasticity, Vol. 12, pp. 1221-1240. 

Paulun, J. E. and Pecherski. R. B., 1987, "On 

the Application of the Plastic Spin Concept for 

the Description of Anisotropic Hardening in 

Finite Deformation Plasticity," Int. J. Plasticity, 

VoI, 3, pp. 303--3t4.  

Van Der Giessen, E., Wu, P_ D., and Neale, K. 

W., 1992, "On the Effect of Plastic Spin on Large 

Strain Elastic-Plastic Torsion of Solid Bars," Int. 

J. PlasticiO~, Vol. 8, pp. 773--801. 

White, C. S., 1988, "A Combined Isotropic 

Kinematic Hardening Model for Large Deforma 

tion Metal Plasticity," Final Report, MTL TR 88- 

46, U. S. Army Material Technology Laboratory. 

Zbib, H. M. and Aifantis, E. C., 1988, "On the 

Concept of Relative and Plastic Spins and its 

Implications to Large Deformation Theories. Part 

]1 : Anisotropic Hardening Plasticity," Acta 

Mech., Vol. 75, pp. 35--56. 


